

MACHINABILITY STUDY OF SPARK ASSISTED CHEMICAL ENGRAVING (SACE): A STATE OF ART

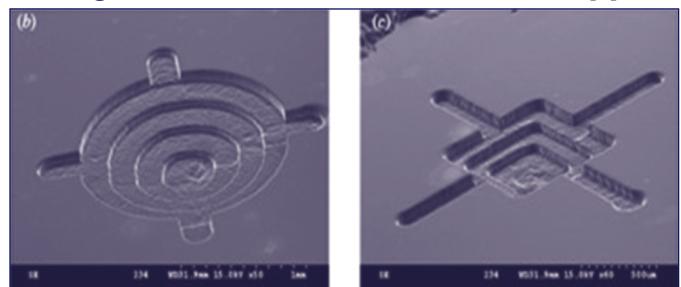
Dr. Vivekshel Rajput

Mudimallana Goud

Narendra Mohan Suri

Abstract

Spark assisted chemical engraving (SACE) is a triumph process for processing the non-conductive materials such as glass, ceramics, composites, quartz, and so on regardless of their physical properties. It shows different criticalness in the field of microelectromechanical systems (MEMS) and lab-on-chips for manufacturing items with the miniaturized dimension on a large scale. Due to the increasing demand for micro-components such as microsensors, micro-batteries, micro-needles, etc in aerospace, nuclear, and medical industries, there has been an escalation in the product miniaturizations. The material removal phenomena in SACE is a consolidated impact of electrochemical machining (ECM) and electric discharge machining (EDM) together. This article discusses the fundamental principles, recent studies, and influential parameter's effect on gas film stability. Moreover, the performance enhancement of the SACE process and the influence of varying discrete process parameters includes applied voltage, electrolyte concentration, tool feed rate, tool shape is discussed. Result revealed that any change in the applied voltage and electrolyte concentration results in the variable spark intensity over the work material. Tool shape significantly affects the formation of the stabilized gas film at its vicinity and its feed rate controls the effective machining gap for electrolyte availability. The present study on SACE reveals that machining with an optimum range of input parameters is crucial for its effectiveness and repeatability. The study highlights the conceivable future regions to improve the machining performance of the SACE process.


Keywords: SACE, micro-holes, material removal rate (MRR), gas film, spark, spherical tool.

1. INTRODUCTION

With a fast increment in the demand of micro-products in the advanced industries like aerospace, bio-medical, nuclear, optics, electronics and communication industries, etc., there has been progressive development in the micro-machining processes. It starts the micro-fabrication of the pioneer engineering materials that include advanced ceramics, superalloys, etc. Moreover, the use of non-conductive materials such as quartz, glass, and ceramics, etc. has also been increasing drastically over the past years, due to some favorable characteristics or peculiar properties. These materials may refer to as "difficult to machine" materials as they are hard and brittle. Despite having several advance technologies, still many challenges are being faced by scientists and researcher to machine these materials such as laser beam machining (high investment, undesirable heat-affected zone (HAZ)), abrasive water jet machining (hazardous, high investment, high maintenance), ultrasonic machining (high cost, tool wear, tool bending), etc. Thus, there is a need for a more sophisticated and advanced machining process, having the potential of machining these engineering materials by confronting up the difficulties faced in other machining processes. Spark assisted chemical engraving (SACE) process has the tremendous potential of machining these "difficult to machine" materials by combining the material removal mechanism of both the electrochemical machining (ECM) and electric discharge machining (EDM) simultaneously. The removal occurs due to the thermal melting of the work material followed by chemical dissolution. It has the following achievements in machining (i) Discrete new materials or hard and brittle materials, (ii) Dimensional

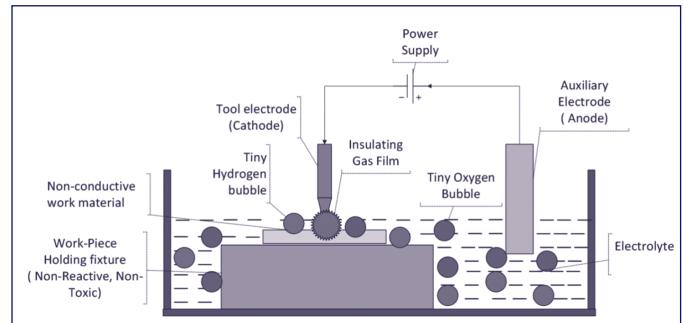
accuracy and high surface finish, (iii) higher material removal rate. SACE exhibits numerous applications in the field of micro-manufacturing. Materials, which are strenuous to process such as glass, quartz, ceramics like aluminum oxide, silicon nitride, etc, can be easily machined by this process. It has one of the distinct advantages of machining the materials regardless of their hardness via thermal energy. The SACE process has an extensive variety of applications in the micro-machining as follows: (i) glass micro-texturing for micro-fluidic applications such as micro-bioreactors and micro-mirrors [1]. (ii) Miniaturization of components such as micro-scale fuel cells, miniature gears, and micro-scale pumps [2]. (iii) micro-fabrication of the glass material for MEMS and other industries such as microbiological laboratories, astronomy, etc. [3], (iv) Biomedical equipment's i.e., biosensors [4]. Chang et al. [5] fabricated micro-holes in glass by utilizing a 200 μm diameter cylindrical tool electrode at two applied voltages (40V and 45 V). Zheng et al. [6] used a layer-by-layer technique to fabricate 3D microstructures on the glass with applied voltage in pulsed form as shown in Figure 1.

Fig. 1 Micro-structure fabricated with SACE [6]

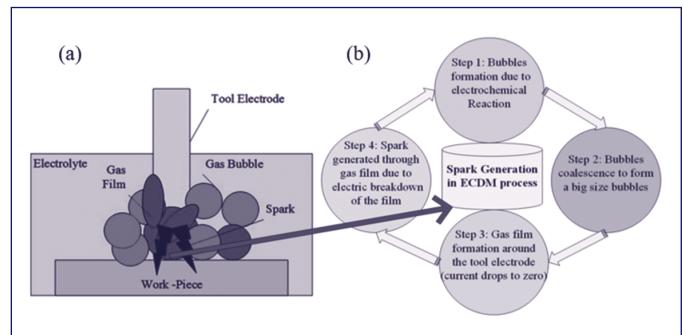
1.1. Historical Developments in SACE process

The SACE was first demonstrated by Kurafuji and Suda in 1968 [7], in which they successfully performed drilling on the glass materials. The process involved the machining characteristics of both the ECM and EDM. They evaluated the effect of electrolyte composition on the removal rate of the material. Thereafter, the developments in the SACE process have been growing with keeping in mind the objective of maximizing its machining performance. It is popularly known by the electrochemical discharge machining (ECDM) process [8-12]. The summary of SACE developments is highlighted in Table 1.

Table 1 Historical development in SACE process


YEAR	DEVELOPMENT	REPORTED BY
1968	The first time drilling in SACE was performed on the glass.	[7]
1972	The first electrochemical grinding apparatus was made.	[8]
1975	Developed an improved electrode structure for the electrochemical discharge machining of a metallic work-piece.	[9]
1985	Studied the discharge mechanism in electrochemical arc machining.	[10]
1996	First time machining of partially conductive piezo-electric ceramic and carbon fiber epoxy composite.	[11]
1999	The 3D microstructure was fabricated on glass using ECDM.	[12]
2004	Build a Fuzzy logic control for SACE.	[13]
2005	Surfactants mixed electrolyte.	[14]
2007	Additives mixed electrolyte.	[15]
2009	Ultrasonic vibrated electrolyte.	[16]
2010	Magnetic field-assisted SACE.	[17]
2011	Use of Spherical tool electrode.	[18]
2012	Machining of E-glass fiber epoxy composite.	[19]
2013	Rotary tool electrode.	[20]
2015	Developed a mathematical model for predicting overcut in SACE.	[21]
2016	Micro-machining on Nickel-based superalloy.	[22]
2017	Electrochemical discharge drilling on beryllium copper alloys.	[23]
2018	Textured tools in SACE micro-channeling.	[24]
2019	Developed a pressurized feeding system for an effective machining gap.	[25]
2019	Numerical and experimental analysis of the SACE process during micro-channeling	[26]
2022	Three-Dimensional Finite element modeling in ECDM	[27]

2. SACE WORKING PRINCIPLE


The SACE process comprises a tool electrode (or cathode) and auxiliary electrode (or anode), both immersed in an alkaline

electrolyte (NaOH, KOH, etc.) and separated by a distance of few centimeters (*known as IEG*) as shown in Figure 2. A pulsed or continuous direct current (DC) power is applied between anode and cathode to complete the circuit. It triggers the electrolysis process which starts the formation of tiny hydrogen and oxygen gas bubbles at the electrodes. With further increase in voltage ($>$ critical voltage), the generation rate of tiny bubbles (oxygen and hydrogen) also increases due to the increase in electrochemical reactions and electrolyte ohmic heating. These tiny bubbles start coalescence with each other. As the generation rate of hydrogen bubbles becomes higher than the generation rate of the bubbles floating on the electrolyte, then bubbles start coalescence physically to form a big size bubble (or hydrogen gas film) which isolates the tool electrode [28]. Figure 3(a) illustrates the mechanism of gas film formation while Figure 3 (b) shows the stepwise spark generation mechanism in the SACE process. The hydrogen gas film behaves as an insulator around the tool (also known as tool blanketing) which abruptly terminates the flow of electric current and generates an immense electric field over the dielectric film produced between cathode tool and electrolyte, which further results into spark (or arc discharge). The removal of the work material in SACE occurs primarily due to the melting and evaporation of the work-piece [29] and partially due to chemical action [30].

Fig. 2 Schematic diagram of SACE [30].

Fig. 3 (a) Gas film formation around tool electrode, 3 (b) Step-wise spark generation [30]

3. LITERATURE STUDY

Spark generation mechanism in SACE was first demonstrated by Basak and Ghosh [31] in which they emphasized that critical value of voltage and current are required for initiating the spark and machining process. They further stated that the spark mechanism is similar to an On/Off action of a switch. Wuthrich

et al. [32] described those immense current intensities are produced at the sharp edges of the tool electrode, requiring tool electrode (cathode) to be made of thinner section as compared to tool anode (auxiliary). Jain et al. [33] detailed a valve theory that considered each gas bubble as a valve that produces spark once its electric breakdown takes place. El-Haddad et al. [34] predicted the current values for stabilized gas film formation by taking into account the gas film dynamics. Further, Fascio et al. [35] divided the typical current-voltage characteristics of SACE into five regions as shown in Table 2. Vogt [36] explained the gas film mechanism based upon wettability and suggested that change in tool electrode wettability results in variable gas film thickness. It was concluded that the tool electrode material and electrolyte concentration are the reasons responsible for the change in wettability. Kulkarni et al. [37] experimentally investigated the spark mechanism in

SACE during the machining of different work materials. The experiments were carried out at 5 wt% HCl and 155 V. They found that the magnitudes of the current values were different despite the similarity in their variations. Behroozfara et al. [38] investigated the plasma channel's characteristics and material removal in the SACE process during the microfabrication of the glass. The finite element modeling (FEM) based thermo-physical model was successfully developed for determining the material removal in the SACE process. They obtained a plasma diameter of 260 μm . Many researchers [39-40] reported that the material removal mechanism majorly depends upon the gas film that builds at the tool vicinity. Thus, gas film stability needs to be controlled for obtaining high-quality machining surface. Many parameters control the gas film stability like electrolyte concentration, tool electrode shape, tool wettability, electrolyte viscosity, etc

Table 2 Different regions of Current-voltage characteristics in the SACE process.

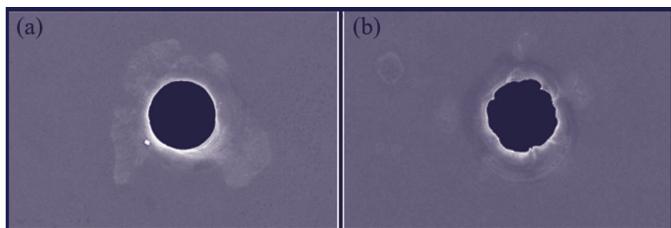
POINTS	REGION	VOLTAGE VALUE	PROCESS	CURRENT
O-A	Thermodynamic region	$0 < U < U_d$	No Electrolysis	No Current
A-B	Ohmic region	$U_d < U < U_{lim}$	Electrolysis takes place	Current varies linearly
B-C	Limiting the current region	$U_{lim} < U < U_{crit}$	Coalescence of bubbles start	Reaches Limiting Value, I_{crit}
C-D	Transition region	$U_{crit} < U < 1.2U_{crit}$	Gas film formation around tool electrode	Current decreases rapidly
D-E	Arc region	$U > 1.2U_{crit}$	Arc discharge takes place	Current seizes

where I is mean current, I_{crit} is critical current density, U is applied voltage, U_{lim} is limiting voltage, U_{crit} is critical voltage and U_d is water decomposition voltage.

Bhuyan et al. [41] have signified that the machining performance depends upon the selection and range of input parameters. Experiments were also conducted to investigate the effects of voltage, pulse on-time (T_{on}), and electrolyte concentration on the removal rate and surface roughness (Ra). An increase in both the pulse on-time and applied voltage leads to an increase in removal rate and roughness. McGeough et al. [42] concluded that applied voltage and feed rates are one of the most influential parameters in determining MRR as its rate increases at higher voltage and feed rate. Rajput et al. [43] compared the machining performance of the cylindrical and pointed tool electrode in terms of MRR. It was found that the pointed tool electrode results in more removal of the work material due to enhanced flow of electrolyte between the tools and work material. Singh et al. [44] build up a pressurized feeding system for maintaining effective control of the machining gap during micro-drilling operations using SACE. Stainless steel coated with 30 μm SiC abrasives was used as a tool electrode. They computed that the pressurized feeding system provides effective control on the machining gap which further results in precise machining in SACE. Rajput et al. [45] studied the parameter's effect on different responses and highlighted the future areas for enhancing the SACE machining performance. Apart from experimental studies, numerous analytical studies were also reported regarding analyzing the performance of the SACE. Various thermal model based upon FEM was described to analyze the removal rate of the SACE process. Bhondwe et al. [46] successfully build a transient thermal model for

analyzing the removal rate of work material by utilizing the temperature distribution plots. Gaussian heat distribution was utilized within the spark region. A good agreement was observed between the experimental and simulated results.

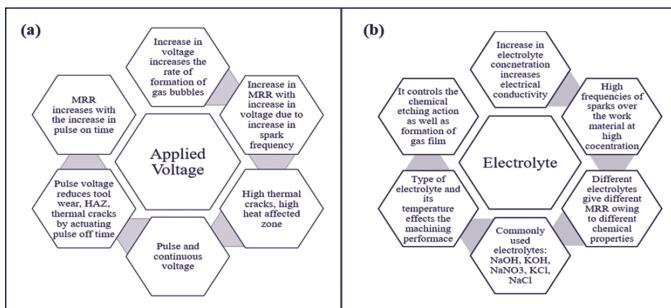
4. RESEARCH FINDINGS ON PERFORMANCE ENHANCEMENT IN SACE


Machining performance of the SACE process is majorly depending upon material removal rate, quality of machined surface, and tolerances. In SACE, input process parameters and their selections play a very crucial role in determining its performance. Various researchers have put forward their explanations regarding the process parameter's effect on enhancing the material removal rate. This section discusses the critical research findings of the previously reported work during SACE machining.

4.1. Effect of the applied voltage

Material removal rate (MRR) of any non-conductive material improves with the rise in applied voltage, as the generation rate of hydrogen bubbles increases which further enhances the intensity of spark frequency. It directly affects the machining efficiency of the SACE process because higher voltage tends to create thermal cracks [16], while lower voltage is required or maintained to ignite thermo-chemical reactions [47]. Lizo et al. [48] investigated the removal rate of the material concerning increasing voltage at three different voltage levels (35V, 40V, 45V) during the micro-channeling process. It was found that an

increase of 1.03 mg in MRR occurs with the increment in the voltage from 35 V to 45 V due to the increased rate of sparking. As a result, higher thermal energy was transferred to the work material and thus giving higher MRR. But too much higher voltage may also result in the thermal cracks at the micro-hole edges. Similar results were given by Cao et al. [49] as seen in Figure 4. Figure 5 (a) shows the summarized report on applied voltage effect on SACE performance.


Fig. 4 Hole exit (a) No thermal cracks when drilled at 30 V (b) Thermal Cracks when drilled at 35V. KOH 30wt%, Ø 30 µm, 1ms/1ms pulse on/off-time ratio and 300 rpm rotational speed [49]

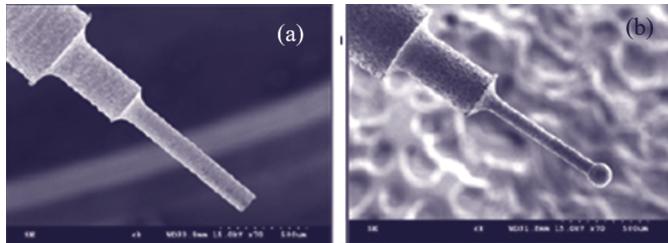
4.2. Effect of electrolyte concentration

The increase in electrolyte concentration results in the increase in the number of individual ions inside the electrolyte and hence the electrolyte's conductivity is enhanced. An increase in electrolyte conductivity produces a higher rate of hydrogen bubbles. Thus, a rapid gas film is formed and as a result, high intensity of sparks over the work material is produced. Thus, the removal rate of work material improves with the increase in electrolyte concentration [35]. A dense and thin gas film can be achieved at a lower voltage and higher electrolyte concentration, thus lowering transition voltage [45]. Rajput et al. [50] evaluated the influence of electrolyte and its concentration on MRR during micro-hole operation with SACE. NaOH, KOH, and NaCl were selected as the different electrolytes. They found that NaOH produces the highest MRR amongst all the electrolytes and removal rate improves with the increase in electrolyte concentration. It was explained that alkaline electrolytes give higher material removal compared to NaCl due to the presence of OH ions. OH ions are necessary for etching action and an increase in concentration enhances the etching action of the electrolyte. Figure 5(b) shows the summarized report on the electrolyte effect on SACE performance.

Fig. 5 Summarized report on (a) applied voltage effect on SACE performance (b) electrolyte effect on SACE performance.

4.3. Effect of tool feed rate

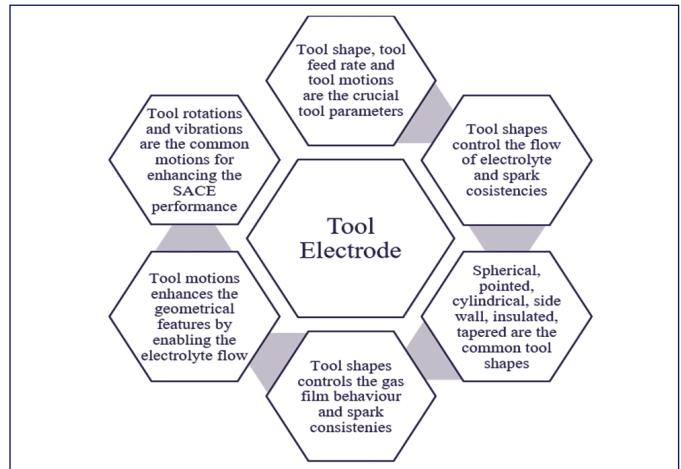
The tool feeding mechanism remarkably affects the machining performance in the SACE process. The selection of tool feed rate should be done effectively as it controls the quality of the machined surface and machining time. It is because feed rates higher than MRR results in the breakage of tools and low feed rates result in higher machining time [51]. In the SACE process, the tool electrode feed rate is controlled by the feeding mechanism adopted for machining. Generally, three feeding mechanisms are available as shown in Table 3.


Table 3 Different tool feeding mechanism in SACE

METHOD	PRINCIPLE	COMMENTS
Gravity feed	Tool motion is obtained by the gravitational force, either tool own weight or additional attached weight to the tool. Permanent contact between the tool and work material.	Forces magnitudes should be minimum as it can break the tool or work material. This method results in more thermal damage of the work material.
Constant velocity	The tool moves at a constant speed in a downward direction. Stepper motors are used to control the tool feed. No permanent contact between the tool and work material.	If tool feed is smaller, machining time is increased. If tool feed is higher, it may result in contact with the work material. Optimum tool feed is selected to maintain the minimum gap.
Adaptive feed control (or Closed-loop feed)	The tool moves according to the actual machining process. It detects contact across the tool and the work material.	The current signal is used as a control parameter to detect the contact and to control the tool motion

4.4. Effect of tool geometry

The different shapes of the tool electrode significantly control the spark consistency either uniform discharges or non-uniform discharges which further produces variable machining characteristics [52-53]. Wuthrich et al. [54] critically mentioned that SACE drilling consists of two different regimes: discharge regime (depths < 200 microns) and hydrodynamic regime (higher depths). In the hydrodynamic regime, the flow of electrolyte is the determining factor for controlling the removal rate during mic-drilling. Various tool shapes such as flat side wall, a side insulated [52], spherical tool [53], needle-shaped [54], etc. can enhance the electrolyte flow at higher depths and ensure surface quality as well. Wuthrich et al. [54] have explained that a better spark consistency is achieved using the needle-shaped tool electrode and results in superior surface quality. Moreover, electrolyte flow can be enhanced using tool electrode motions such as vibration, rotation, etc and different tool shapes. Yang et al. [53] examined the effect of two different tool geometries i.e., spherical and cylindrical on tool wear and surface roughness. The scanning electron microscopic (SEM) images are shown in Figure 6. The results showed that the spherical tool reduces the tool wear and reduces the machining time by 83% when compared to the cylindrical shape tool.


Fig. 6 SEM images of cylindrical and spherical tool electrode [53]

4.5. Effect of tool immersion depth

In the SACE process, the tool immersion depth critically affects the machining performances by controlling the spark consistencies and gas film stability. Higher tool immersion depths result in the unstabilized gas film formation due to the difficulty in enveloping the whole electrode surface area [55]. It deteriorates the machining performance of the process. Low tool immersion depths produce excellent machining characteristics in terms of surface finish [56]. Razfar et al. [57] build up a mathematical model for correlating and optimizing the input parameters alongside tool immersion depth to minimize the HAZ and radial overcut during glass drilling. Three levels of tool immersion depth were selected i.e., 0.9 mm, 1.1 mm, and 1.3 mm for the drilling operation. They observed that higher tool immersion depth reduces the amount of thermal energy transference to the work material. As a result, low HAZ, low MRR, and low ROC were obtained. Figure 7 shows the summarized report on tool electrode parameter's effect on SACE performance.

Fig. 7 Summarized report on tool electrode parameter's effect on SACE performance.

5. FUTURE RESEARCH POSSIBILITIES

SACE is a highly complicated process and consists of different phenomena. The machining characteristics in SACE majorly rely on process parameters such as voltage, pulse on time, duty cycle, electrolyte type, and its concentration, tool material, tool shape and size, tool feed rate, work material, machining gap, inter-electrode gap (IEG), anode material, etc. To date, the exact material removal mechanism in SACE has not understood well. The contribution of chemical action and its effectiveness is yet to be explored in detail. Table 4 highlights the major future areas along with the possible methodology to improve the SACE performance.

Table 4 Research possibilities in SACE process

SACE areas				
MRR	HAZ, Overcut, Micro-cracks	Surface finish	Electrolyte	Tapering effect
Research Possibilities				
Using different combination of Voltage and electrolyte concentration, tool rotation, different tool shapes such as tapered, a side insulated, flat wall side, etc	Study of machining gap, Tool feed rate, and applied voltage.	Selection of different electrolytes for etching action, use of different electrolyte concentration, using different duty ratio	Use of different electrolytes, preheating of electrolytes, Mixing of two electrolytes, environment-friendly electrolytes, abrasive mixed electrolytes.	Use spherical tools, negative taper tools, and rotating tools.
Possible outcomes				
Improvement in MRR	Reduction in HAZ and overcut.	Better surface finish.	Enhancement in surface finish, MRR, and reduction in hazardous effect.	Reduction in tapering effect

6. CONCLUSIONS

The present article discusses the fundamental principles of the SACE process and the input process parameter's effect on its performance. A comprehensive review on SACE determines that its performance majorly relies on the selection of input process parameters. Thus, effective and repeatable machining can be obtained by choosing and optimizing the input parameters. The present state of art contributes to the existing literature of the SACE by laying down the platform

with various research findings on influential parameters (such as electrical parameters, electrolyte parameters, and tool electrode parameters) and their effects on SACE performance. A summarized report on voltage, electrolyte, and tool electrode parameters helps in identifying the critical parameters for pursuing future study with SACE. It further provides the platform for comprehending the mechanism of stabilized gas film formation at the tool vicinity and summarizes the results of crucial parameters affecting gas film stability. The discussions on future visions can be channelized further for enhancing

ECDM performance. The major conclusions withdrawn from the study are given below:

- SACE machining is a novel process for machining the non-conductive material with superior surface quality.
- Thermal models can be successfully applied and utilized to analyze the performance of the SACE process. It helps in predicting the optimized parameters for a certain response.
- Any change in electrolyte conductivity and applied voltage alters the frequencies of the sparks over the work material. Pulse voltage reduces the thermal cracks and HAZ due to the application of periodically sparks (or pulse on time).
- Tool design with an optimum shape such as a pointed tool, flat side tool, tapered tool, etc. can be used for reducing the radial overcut and tapering during micro-drilling at higher depths.
- Closed-loop machining is efficient in maintaining an effective machining gap using a force sensor.
- Appropriate methods of controlling gas film, optimum selection of input parameters, controlling geometrical tolerances, and effective tool feed control system are the critical areas that need continuous improvement and can be further investigated.

ACKNOWLEDGMENTS

The authors are thankful to Punjab Engineering College (Deemed to be University), Chandigarh for supporting this research.

REFERENCES

1. R. Wuthrich, K. Fujisaki, P. Couthy, L. A. Hof, and H. Bleuler, "Spark assisted chemical engraving (SACE) in micro-factory", *Journal of Micromechanics and Microengineering*, vol.15, pp. 276–280, 2005.
2. A. Daridon, V. Fasci, J. Lichtenberg, R. Wuthrich, H. Langen, E. Verpoorte, and N.F. De Rooij, "Multi-layer microfluidic glass chips for microanalytical applications Fresenius", *J. Anal. Chem.*, vol. 371, pp.261–9, 2001.
3. E. S Lee, D. Howard, E. Liang, S.D. Collins, and R.L. Smith, "Removable tubing interconnects for glass-based micro-fluidic systems made using ECDM", *J. Micromech. Microeng.*, vol.14, pp. 535–41, 2004.
4. A.K.M. De Silva, A.B. Khayry, and J.A. McGeough, "Process monitoring and control of electroerosion-dissolution machining", *IMechE Conference Transactions*, in: *Proceedings of the 11th International Conference on Computer-Aided Production Engineering*, vol.73–78, 1995.
5. Z. P. Zheng, W. H. Cheng, F. Y. Huang, and B. H. Yan, "3D Micro structuring of Pyrex glass using the electrochemical discharge machining process", *Journal of Micromechanics and Microengineering*, vol.17, pp.960-966, 2007.
6. R. Wuthrich, B. Despont, P. Maillard, and H. Bleuler, "Improving the material removal rate in spark assisted chemical engraving (SACE) gravity feed micro-hole drilling by tool vibration", *Journal of Micromechanics and Micro-engineering*, vol.16, pp.28-31, 2006.
7. H. Kurafuji, and K. Suda, "Electrical discharge drilling of glass", *Ann. CIRP*, vol.16, pp.415–419, 1968.
8. L.V. Colwell, "Electrochemical grinding apparatus", US Patent, no. 3,697,403, 1972.
9. K. Inoue, "Electrode for electrical machining", US Patent, no. 3,894,925, 1975.
10. M. Crichton, and J.A. McGeough, "Studies of the discharge mechanisms in electrochemical arc machining", *Journal of Applied Electrochemistry*, vol. 15, pp.113-119, 1985.
11. Y. P. Singh, V. K. Jain, P. Kumar, and D. C. Agrawal, "Machining piezoelectric (PZT) ceramics using an electrochemical spark machining (ECSM) process", *Journal of Materials Processing Technology*, vol. 58, pp. 24–31, 1996.
12. V. Faschi, R. Wuthrich, D. Viquerat, and H. Langen, "3D micro structuring of glass using electrochemical discharge machining (ECDM)" In: *International symposium on micro mechatronics and human science*, pp.179–183, 1999.
13. G. Skrabalak, M.Z. Skrabalak, and A. Ruszaj, "Building of rules base for fuzzy-logic control of the ECDM process", *J. Mater. Process Technol.*, vol.149, pp. 530-535, 2004.
14. R Wüthrich, L A Hof, A Lal, K Fujisaki, H Bleuler, Ph Mandin and G Picard, "Physical principles and miniaturization of spark assisted chemical engraving (SACE)", *Journal of Micromechanics and Microengineering*, vol.15, 2005.
15. M.S. Han, B.K. Min, and S.J. Lee, "Improvement of surface integrity of electro-chemical discharge machining process using powder-mixed electrolyte", *J. Mater. Process Technol.*, vol.191, pp.224–227, 2007.
16. M.S. Han, B.K. Min, and S.J. Lee, "Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte", *J. Micromech. Microeng.*, vol.19, pp.8, 2009.
17. C.P Cheng, K.L Wu, C.C Mai, Y.S Hsu and B.H Yan, "Magnetic field-assisted electrochemical discharge machining", *Journal of Micromechanics and Microengineering*, vol. 20, 2010.
18. C.K Yang, K.L Wu, J.C Jung, S.M Lee, J.C Lin, and B.H Yan, "Enhancement of ECDM efficiency and accuracy by spherical tool electrode", *Int. J. Mach. Tool Manu.*, vol. 51, pp.528-35, 2011.
19. M. Alakesh, and V. Narang, "A study on micro machining of e-glass-fibre-epoxy composite by ECSM process", *International Journal of Advanced Manufacturing Technology*, vol. 61, pp.1191–1197, 2012.

20. Y. Zhang, Z. Xu, Y. Zhu, and D. Zhu, "Effect of tube-electrode inner structure on machining performance in tube-electrode high-speed electrochemical discharge drilling", *J. Mater. Process Technol.*, vol. 231, pp.38–49, 2016.
21. A. B. Kamaraj, S. K. Jui, Z. Cai, and M.M. Sundaram, "A mathematical model to predict overcut during electrochemical discharge machining", *The International Journal of Advanced Manufacturing Technology*, vol.81, no.1–4, pp.685–691, 2015.
22. Z. Yan, X. Zhengyan, X. Jun, and Z. Di, "Effect of tube electrode inner diameter on electrochemical discharge machining of nickel-based superalloy", *Chin. J. Aeronaut.*, vol. 29 (4), pp.1103–1110, 2016.
23. S. Dong, Z. Wang, and Y. Wang, "High-speed electrochemical discharge drilling (HSECD) for micro-holes on C17200 beryllium copper alloy in deionized water", *The International Journal of Advanced Manufacturing Technology*, vol. 88, pp.827-83, 2017.
24. S. Tarlochan, and D. Akshay, "On performance evaluation of textured tools during micro-channeling with ECDM", *Journal of Manufacturing Processes*, vol.32, pp.699-713, 2018.
25. S. Tarlochan, and D. Akshay, "On pressurized feeding approach for effective control on working gap in ECDM", *Materials and Manufacturing Processes*, vol.33, no.4, 2018.
26. B. Mallick, A.S. Hameed, B.R. Sarkar, B. Doloi, and B. Bhattacharyya, "Experimental investigation for improvement of micro-machining performances of μ -ECDM process", *Materials Today: Proceedings*, 2020. DOI: 10.1016/j.matpr.2019.12.195.
27. V.S. Rajput, M.M. Goud, and N. M. Suri, "3D finite element modeling and multi-objective optimization for controlling the electrochemical discharge drilling parameters using the tool feed monitoring system", *Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science*. April 2022. doi:10.1177/09544062221079170.
28. P.K. Gupta, A. K. Dvivedi, and P. Kumar, "Effect of Pulse Duration on Quality Characteristics of Blind Hole Drilled in Glass by ECDM", *Materials and Manufacturing Processes*, vol. 31, pp.1740–1748, 2016.
29. B. Bhattacharyya, B.N. Doloi, and S.K. Sorkhel, "Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials", *Journal of Material Processing Technology*, vol. 95, pp.145–154, 1999.
30. V.S. Rajput, M.M. Goud, and N. M. Suri, "Multi-response optimization of ECDM parameters for silica (quartz) using grey relational analysis", *Silicon*, 13(5), 1619:1640. <https://doi.org/10.1007/s12633-020-00538-7>
31. I. Basak, and A. Ghosh, "Mechanism of spark generation during electrochemical discharge machining: a theoretical model and experimental verification", *Journal of Materials Processing Technology*, vol. 62, pp. 46-53, 1996.
32. R. Wuthrich, C.H. Comninellis, and H. Bleuler, "Bubble evolution on vertical electrodes under extreme current densities", *Electrochimica Acta*, vol. 50, pp.242-246, 2005.
33. V.K. Jain, P.M. Dixit, and P.M. Pandey, "On the analysis of the electrochemical spark machining process", *Int. J. Mach. Tools Manuf.*, vol. 39, pp.165–186, 1999.
34. R. El-Haddad, and R. Wuthrich, "A mechanistic model of the gas film dynamics during the electrochemical discharge phenomenon", *J. Appl. Electrochem.*, vol. 40, pp.1853–1858, 2010.
35. V. Fascio, H. Langen, H. Bleuler, and Ch. Comninellis, "Investigations of the spark-assisted chemical engraving", *Electrochim. Commun.*, vol. 5, pp. 203–207, 2003.
36. H. Vogt, "The anode effect as a fluid dynamic problem", *Journal of Applied Electrochemistry*, vol. 29, no. 2, pp.137-145, 1999.
37. A. Kulkarni, R. Sharan, and G.K. Lal, "An experimental study of discharge mechanism in electrochemical discharge machining", *Int. J. Mach. Tool Manu.*, vol. 42, pp.1121–7, 2002.
38. A. Behroozfar, and M. R. Razfar, "Experimental and Numerical Study of Material Removal in Electrochemical Discharge Machining (ECDM)", *Materials and Manufacturing Processes*, vol.31, no.4, pp.495-503, 2016.
39. V.S. Rajput, M.M. Goud, and N. M. Suri, "Electrochemical discharge machining: gas film electrochemical aspects, stability parameters, and research work", *Journal of Electrochemical Society*, 168(1), 2021. <https://doi.org/10.1149/1945-7111/abd516>
40. V.S. Rajput, M.M. Goud, and N. M. Suri, "Three-Dimensional Finite Element Modeling and Response Surface Based Multi-response Optimization During Silica Drilling with Closed-Loop ECDM", *Silicon*, 3583–3609, 2021. <https://doi.org/10.1007/s12633-020-00867-7>
41. B.K. Bhuyan, and Y. Vinod, "Machining Characteristics of Borosilicate Glass Using Travelling Wire Electro-Chemical Spark Machining (Tw-ESCM) Process", *Proceedings of the National Conference on Trends and Advances in Mechanical Engineering*, YMCA University of Science & Technology, Faridabad, Haryana, 2012.
42. J.A. McGeough, A.B.M. Khayry, and W. Munro, "Theoretical and experimental investigation of the relative effects of spark erosion & electrochemical dissolution in electrochemical arc machining", *Annals of the CIRP*, vol. 32, pp.113-118, 1983

43. V.S. Rajput, M.M. Goud, and N. M. Suri, "Numerical and experimental investigations to analyze the micro-hole drilling process in spark-assisted chemical engraving (SACE)", *SN Applied Science*, 2(9), 1-17 2021.

44. S. Tarlochan, and D. Akshay, "On pressurized feeding approach for effective control on working gap in ECDM", *Materials and Manufacturing Processes*, vol.33, no.4, 2018.

45. V.S. Rajput, M.M. Goud, and N. M. Suri, "Performance Analysis of ECDM Process Using Surfactant Mixed Electrolyte". In: Sharma V., Dixit U., Sørby K., Bhardwaj A., Trehan R. (eds) *Manufacturing Engineering. Lecture Notes on Multidisciplinary Industrial Engineering*. Springer, Singapore, 2020. https://doi.org/10.1007/978-981-15-4619-8_22

46. K.L. Bhondwe, V. Yadava and G. Kathiresan, "Finite element prediction of material removal rate due to electro-chemical spark machining". *Int J Mach Tool Manu*, vol.46, pp. 1699-1706, 2006. DOI: 10.1016/j.ijmachtools.2005.12.005.

47. C. Wei, K. Xu, and J. Ni, et al. "A finite element-based model for electrochemical discharge machining in discharge regime", *Int. J. Adv. Manuf. Tech.*, vol. 54, pp. 987-995, 2011. DOI: 10.1007/s00170-010-3000-0R.

48. P. Lijo, and S.H. Somashekhar, "Characterization of Micro Channels in Electrochemical Discharge Machining Process", *Applied Mechanics and Materials*, pp. 238-242, 2014.

49. X. D. Cao, B. K. Kim, and C. N. Chu, "Micro-structuring of glass with features less than 100 μ m by electrochemical discharge machining", *Precision Engineering*, vol. 33, pp.459-465, 2009.

50. V.S. Rajput, M.M. Goud, and N. M. Suri, "Finite Element Modeling for Comparing the Machining Performance of Different Electrolytes in ECDM. *Arab J Sci Eng* 46, 2097-2119, 2021. <https://doi.org/10.1007/s13369-020-05009-0>.

51. R.N. Yadav, "Electro-chemical spark machining-based hybrid machining processes: Research trends and opportunities", *Proc IMechE Part B: J Engineering Manufacture*, vol. 233, no.4, pp.1037-1061, 2019.

52. M.S. Han, B.K. Min, and S.J. Lee, "Modeling Gas Film Formation in Electrochemical Discharge Machining Processes using a Side-Insulated Electrode", *Journal of Micromechanics and Microengineering*, vol.18, no.4, 2008

53. C.K. Yang, K.L. Wu, J.C. Hung, S.M. Lee, J.C. Lin, and B.H. Yan, "Enhancement of ECDM efficiency and accuracy by spherical tool electrode", *Int. Journal of Machine tools and Manuf.*, vol. 51, pp.528-535, 2011.

54. R. Wuthrich, U. Spaeter, Y. Wu, and H. Bleuler, "A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving (SACE)", *J. Micromech. Microeng.*, vol. 16, pp.1891-6, 2006.

55. K. Leszek, "Investigation into Electrochemical Discharge Machining of microholes", *Journal of Automation, Mobile Robotics & Intelligent Systems*, vol. 3, 2009.

56. L.W. Hourng, C.I. Lin, and B.G. Lee, "The Improvement of Machining Accuracy on Quartz and Glasses by Electrochemical Discharge Machining", *Applied Mechanics and Materials*, vol. 472, pp. 682-687, 2014.

57. M.R. Razfar, J. Ni, A. Behroozfar, and S. Lan, "An investigation on electrochemical discharge micro-drilling of glass", *ASME 2013: International Manufacturing Science and Engineering Conference*.

AUTHORS

Dr. Vivek Sheel Rajput, Production and Industrial Engineering Department, Punjab Engineering College, Sector 12, Chandigarh - 160 012 Punjab, India
Email: sheelrajput03@gmail.com

Mudimallana Goud, Production and Industrial Engineering Department, Punjab Engineering College, Sector 12, Chandigarh - 160 012 Punjab, India

Narendra Mohan Suri, Production and Industrial Engineering Department, Punjab Engineering College, Sector 12, Chandigarh - 160 012 Punjab, India